Hamiltonian Systems with Widely Separated Frequencies

نویسندگان

  • J M Tuwankotta
  • F Verhulst
چکیده

In this paper we study two degree of freedom Hamiltonian systems and applications to nonlinear wave equations. Near the origin, we assume that near the linearized system has purely imaginary eigenvalues: i! 1 and i! 2 , with 0 < ! 2 =! 1 1 or ! 2 =! 1 1, which is interpreted as a perturbation of a problem with double zero eigenvalues. Using the averaging method, we compute the normal form and show that the dynamics diiers from the usual one for Hamiltonian systems at higher order resonances. Under certain conditions, the normal form is degenerate which forces us to normalize to higher degree. The asymptotic character of the normal form and the corresponding invariant tori is validated using KAM theorem. This analysis is then applied to widely separated mode-interaction in a family of nonlinear wave equations containing various degeneracies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review

Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with timeor state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more...

متن کامل

On Weyl–titchmarsh Theory for Singular Finite Difference Hamiltonian Systems

We develop the basic theory of matrix-valued Weyl–Titchmarsh M-functions and the associated Green’s matrices for whole-line and half-line self-adjoint Hamiltonian finite difference systems with separated boundary conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001